A self-adaptive scheduling algorithm for reduce start time

نویسندگان

  • Zhuo Tang
  • Lingang Jiang
  • Junqing Zhou
  • Kenli Li
  • Keqin Li
چکیده

MapReduce is by far one of themost successful realizations of large-scale data-intensive cloud computing platforms. When to start the reduce tasks is one of the key problems to advance the MapReduce performance. The existing implementationsmay result in a block of reduce tasks.When the output ofmap tasks become large, the performance of a MapReduce scheduling algorithm will be influenced seriously. Through analysis for the current MapReduce scheduling mechanism, this paper illustrates the reasons of system slot resources waste, which results in the reduce tasks waiting around, and proposes an optimal reduce scheduling policy called SARS (Self Adaptive Reduce Scheduling) for reduce tasks’ start times in the Hadoop platform. It can decide the start time point of each reduce task dynamically according to each job context, including the task completion time and the size of map output. Through estimating job completion time, reduce completion time, and system average response time, the experimental results illustrate that, when comparing with other algorithms, the reduce completion time is decreased sharply. It is also proved that the average response time is decreased by 11% to 29%, when the SARS algorithm is applied to the traditional job scheduling algorithms FIFO, FairScheduler, and CapacityScheduler. © 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness

This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...

متن کامل

An adaptive modified firefly algorithm to unit commitment problem for large-scale power systems

Unit commitment (UC) problem tries to schedule output power of generation units to meet the system demand for the next several hours at minimum cost. UC adds a time dimension to the economic dispatch problem with the additional choice of turning generators to be on or off.  In this paper, in order to improve both the exploitation and exploration abilities of the firefly algorithm (FA), a new mo...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

Pre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems

Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...

متن کامل

Pre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems

Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Future Generation Comp. Syst.

دوره 43-44  شماره 

صفحات  -

تاریخ انتشار 2015